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Abstract—Packet classification is an enabling function in Internet 
routers for a variety of Internet applications. In order to classify 
Internet packets into flows, Internet routers must perform 
searches over a set of filters using multiple fields of the packet as 
the search key. Because of its speed and simple filter 
management the Ternary Content Addressable Memory (TCAM) 
is currently the dominant hardware solution for IP lookups, i.e., 
a one-dimensional packet classification. To make TCAM the 
solution for the multi-dimensional packet classification, efficient 
methods that store the range fields of the classification tables in 
TCAM are needed. In this paper, we propose a set of novel range 
encoding schemes based on Gray code. Many range-encoding 
techniques are used to improve the existing elementary interval-
based range encoding schemes. The present experiment’s results 
show that the proposed Gray code-based schemes consume less 
TCAM storage space than the existing schemes.  

I. INTRODUCTION

Packet classification is needed for a variety of Internet 
services that require the capability of differentiating various 
packet flows for suitable processing. Flows are defined by rules 
that specify some criteria for the field values of the packet 
headers in incoming packets. In order to classify packets into 
flows, routers must perform searches over a set of rules using 
multiple fields of the packet as the search key. Typically, the 
packet header fields used in filters comprise the following five 
fields: two prefixes specifying the source and destination IP 
sub-networks, two arbitrary ranges specifying the source and 
destination transport-layer specifications, and a singleton value 
or a wildcard for the protocol number. Routers resolve the flow 
for a given packet by searching the set of filters for the subset 
of matching filters against the five header field values of the 
packets. 

Packet classification can be implemented in either software 
or hardware. Many software approaches were proposed in the 
literature. However, the software solutions have the 
disadvantages of un-deterministic run times and memory 
requirements growing linearly with the sizes of the rule tables. 
It is a challenge to implement the packet classification purely 
by software and still be able to meet the search speed 
requirement in gigabit routers. Readers can refer to [3] for 
comprehensive surveys on software solutions. In this paper, we 
focus on hardware architectures, especially, the Ternary 
Content Addressable Memory (TCAM)-based search engine. 
The TCAM-based search engine is currently the popular 
hardware solution because (1) industry vendors are providing 

cheaper and faster similar TCAM products, (2) TCAM 
architecture is easy to understand and simple to manage for 
updating TCAM entries, and (3) TCAM’s performance is 
deterministic (i.e., it takes the same number of cycles to 
complete a search). 

Despite these advantages, TCAMs do suffer from four 
primary deficiencies: (1) high cost per bit relative to other 
memory technologies, (2) high power consumption, (3) limited 
scalability to long input keys, and (4) inefficiency in storing 
ranges. The cost-to-density-ratio of TCAM has been 
dramatically improved in recent years. A lower power 
consumption for TCAMs can be achieved by means of circuit 
designs that reduce the matchline voltage swing, the switching 
activity, or the active matchline capacitance [11]. The 
partitioning techniques proposed in [12][13] can also reduce 
the TCAM power consumption. However, it can only do so for 
the prefix fields. A traditional solution for storing ranges in 
TCAM is the direct range-to-prefix conversion which 
individually converts each range into multiple prefixes. In the 
worst case, a W-bit range may require 2(W – 1) prefixes. A 
single filter including two port ranges could require 4(W – 1)2

TCAM entries, or 900 entries for 16-bit port numbers. This is 
usually referred to as the range-to-prefix blowout. The problem 
of limited scalability to long input keys can be solved by the 
range encoding techniques proposed in [7]. 

Many range encoding schemes were proposed in the 
literature to solve the range-to-prefix blowout problem 
[4][5][7]. These range encoding schemes are based on the 
independent field searches and the two-level SRAM-TCAM 
architecture shown in Figure 1. The field values in each field of 
the rule table are independently converted into one or more 
field ternary strings by using a special encoding scheme. The 
field ternary strings of all field values in a rule are multiplied to 
obtain one or more rule ternary strings that are finally stored in 
TCAM. Likewise, the address values in the input packet 
headers must be translated to the intermediate results which are 
used as the keys to perform the search operations in TCAM. 
The address-to-intermediate result translation is the additional 
overhead introduced in the two-level SRAM-TCAM 
architecture. Thus, the address-to-intermediate result 
translation table must be done efficiently. In this paper, we do 
not encode the prefix fields as shown in Figure 1 because 
prefixes can be stored in TCAM directly. In [4][5], a n-bit 
vector is used to represent each range field of a rule, where n is 
the number of distinct ranges specified in this field. In [7], a set 
of encoding schemes called parallel packet classification 

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1834



encoding (PPCE) is proposed based on the concept of 
elementary intervals. PPCE improves over the scheme 
proposed in [5] by exploiting the relationship between ranges. 
In this paper, we further improve PPCE by using the binary 
reflected Gray codes [9]. Our experimental results show that 
the proposed Gray code-based schemes use less TCAM storage 
than PPCE.  

The rest of the paper is organized as follows. Preliminaries 
and related works are discussed in Section II. The proposed 
schemes are described in Section III. The results of the 
performance comparisons are given in Section IV. Finally, the 
paper is concluded in the last section. 

II. PRELIMINARIES AND RELATED WORKS

We first briefly describe the Buddy code, Gray code, and 
the elementary intervals needed in the paper. Their formal 
definitions can be found in [9] and [10]. Then, the existing 
TCAM encoding schemes that are closely related to the 
proposed schemes are described.  

Buddy Code (BC): The Buddy code follows the traditional 
number sequence (e.g., 0, 1, 2, 3, …, 2n – 1 for n-bit 
addresses). Based on the Buddy code, the prefix ∗− hW bb 1

contains the addresses of 
h

hW bb 001−
 to 

h

hW bb 111−
. Each 

prefix A = ∗+− hhW bbb 11  of length W – h ≥ 1 has a buddy 

prefix B = ∗+− hhW bbb 11  such that A and B can be combined 

into prefix ∗+− 11 hW bb  of length W – h – 1.  

Binary Reflected Gray Code (BRGC): The binary 
reflected Gray code is defined recursively as follows. The 1-bit 
BRGC code is G1 = {0, 1} and the k-bit BRGC code is 

{ }011-21-210 1,1,,1,0,,0,0 1-k1-k IIIIIIGk =
, where 

{ }
1-2101 1-k,,, IIIGk =−  is the (k–1)-bit BRGC code. For 

example, the 3-bit BRGC code is G3 = {000, 001, 011, 010, 
110, 111, 101, 100}, where the last inserted bits are underlined.  

Elementary intervals: Assume there is a default range
covering the whole address space. The elementary intervals,
constructed from the endpoints of a range set G, is EI = {E[i] | 
E[i] = [L[i], U[i]] for i = 0 to k – 1}, where k is the number of 
elementary intervals in EI. EI must satisfy the following four 

conditions: (1) L[0] = 0 and U[k–1] = 2W – 1, (2) U[i] = L[i+1] 
– 1 for i = 0 to k – 2, (3) all the addresses in E[i] are covered by 
the same subset of G, denoted by G[i], and (4) G[i] ≠ G[i+1]. 
For example, EI constructed from a set of six 5-bit ranges is 
shown in Figure 2. There are six valid elementary intervals
covered by at least one original range in G. The other intervals 
are default elementary intervals covered only by the default 
range [0, 31]. 

A. Direct range-to-prefix conversion 
In the direct range-to-prefix conversion, each range is 

individually converted into one or more prefixes. Efficient 
direct range-to-prefix conversion algorithms can be found in [1] 
and [10]. For example, the range R = [2, 6] is converted into 
three prefixes, 001*, 010*, and 0110. In the worst case, the 
range [1, 2W – 2] is split into 2W – 2 prefixes. For a set of m
ranges, the worst-case number of prefixes generated by a direct 
range-to-prefix conversion algorithm is O(mW) [10]. 

B. Elementary interval-based encoding scheme 
By giving each elementary interval a unique identifier 

(code), an original range can be encoded by the identifiers of 
the elementary intervals covered by the range. The ranges 
encoded by the identifiers of the elementary intervals are called 
primitive ranges [7]. For example, the set of four 5-bit ranges 
G = {R1 = [14, 27], R2 = [2, 6], R3 = [11, 29], R4 = [9, 22]} 
generates the set of elementary intervals EI = {E0, E1, …, E8}
shown in Figure 2. First, we assign a unique identifier to each 
elementary interval. One simple way is to assign the identifiers 
to the elementary intervals serially (i.e., Buddy code). E0 gets 
0, E1 gets 1, and so on. Thus, R1 can be encoded as a primitive 
range [5, 6] because R1 covers elementary intervals EI5 and 
EI6. Similarly, R2, R3, and R4 are encoded as [1, 1], [4, 7], and 
[3, 5], respectively. Because there are nine elementary 
intervals, four bits are needed in the code space. Thus, by using 
the direct range-to-prefix conversion, R1 is converted into two 
prefixes 0101 and 0110. R2 is converted to 0001, R3 is 
converted to 01**, and R4 is converted to 0011 and 010*. A 
total of six 4-bit prefixes are needed. As a comparison, the 
original direct range-to-prefix conversion generates 17 5-bit 
prefixes for the same set of ranges. To differentiate this scheme 
from other elementary interval-based schemes presented in this 
paper, we call it the basic elementary interval scheme.

C. Parallel packet classification encoding (PPCE) scheme 
PPCE [7] is also based on elementary intervals but the 

default elementary intervals are given a common code 0. PPCE 
divides the original primitive ranges into multiple groups 
(called layers). Depending on the encoding style, the codes 
assigned to the primitive ranges in one layer may be (1) 

Figure 1.Two-level architecture for packet classification. 
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independent of, (2) partially dependent on, or (3) completely 
dependent on the codes assigned to the primitive ranges in 
other layers.  

In the PPCE style-I, all the ranges in one layer must be 
disjoint. The number of layers required will be equal to the 
maximum number of ranges that all overlap with each other. 
The code assignment done in one layer is independent of the 
other layers. Assume layer i contains Li ranges. Different non-
zero codes are assigned to the Li address segments covered by 
the Li ranges and zero is assigned to addresses that are not 

covered by any range. ( )1log +iL  bits are needed for layer 
i consisting of Li ranges. The intermediate result (identifier) of 
an elementary interval is obtained by concatenating the codes 
of the elementary interval in all layers. As shown in Figure 
3(a), layer 3 contains R1 and R2; thus, two bits are needed to 
encode the three address segments created by R1 and R2. The 
PPCE style-I is the same as the bitmap intersection scheme 
proposed in [5] if only one range is allowed in a layer. 

After we encode the elementary intervals, each primitive 
range has to be assigned with a match condition which is the n-
bit ternary string stored in TCAM, where n = 

=

+
m

i
iL

1

)1log(  and m is the number of layers. Let Ri be a 

range in layer i. The match condition of Ri is obtained by 
setting the corresponding bits to the code assigned to Ri in layer 
i and the other bits corresponding to the other layers are set to 
don’t care. For example, layers 1, 2, and 3 need 1, 1, and 2 bits, 
respectively. R1 in Figure 3(a) has the code 10 in layer 3. 
Therefore, the match condition of R1 is 10**. For an input 

address p, we can first locate the interval to which address p
belongs and obtain the code for that interval to perform a 
lookup against the match conditions of all ranges. As shown in 
Figure 3(a), if p is 15, then the corresponding interval is E3. By 
using the code 0011 assigned to E3, we can find that the 
matches are R3 and R4. 

The PPCE style-II reduces the number of bits required for 
each layer by inspecting the code dependencies among layers. 
Two primitive ranges at the same layer can be assigned a 
common identifier if both ranges are subsets of two disjoint 
primitive ranges at other layers. For example, in Figure 3(b), 
the addresses that match R1 must also match R3, but the 
addresses that match R2 must not match R3. Thus, only one bit 
is needed in layer 3. 

The PPCE style-III reduces the number of bits by reducing 
the number of layers. It groups the primitive ranges at different 
layers into one larger layer. The ranges in a layer may be 
overlapping. However, a range may be represented as more 
than one match condition. Figure 3(c) shows the final result of 
the PPCE style-III when R3 and R4 are placed in the same 
layer. The elementary intervals covered by R1 and R2 in layer 
2 are assigned a common identifier “1” based style-II technique. 
In layer 1, the three disjoint intervals, [E2, E2] covered by R4, 
[E3, E4] covered by R3 and R4, and [E5, E6] covered by R3, 
are assigned with the identifiers 01, 10, and 11, respectively. 
Range R4 needs two match conditions, 001 and *10. 

The extreme case of PPCE style-III is to put all the ranges 
in one single layer, as shown in Figure 3(d), which corresponds 
to the RFC-like encoding scheme [3]. This extreme case differs 
from the basic elementary interval-based scheme in that the 
default elementary intervals are assigned a common identifier 0. 

III. PROPOSED RANGE ENCODING SCHEMES

In this section, we improve the existing PPCE encoding 
schemes [7] by using BRGC instead of the Buddy code. 
Although the proposed schemes are designed for ranges, they 
are also applicable to prefixes for reducing the TCAM storage 
usage, especially in the 128-bit IPv6 source and destination 
address fields. 

A. Elementary interval and BRGC-based range encoding 
In this scheme, the default elementary intervals are given a 

common code and the valid elementary intervals are assigned 
with the codes based on BRGC. For example, in Figure 2, the 
codes assigned to the six valid elementary intervals, E1, E3, E4, 
E5, E6, and E7 are 001, 010, 110, 111, 101, and 100, 
respectively, in the BRGC sequence. The default elementary 
intervals, E0, E2, and E8, are assigned with the code 000. As a 
result, the primitive range R1 is represented as the ternary 
string 1*1. Similarly, R2 is represented as 001, R3 as 1**, and 
R4 as, *10 and 111, as shown in Figure 4(a). 

B. Enhancing PPCE with BRGC 
We modify the PPCE style-II and style-III by using BRGC 

to assign the identifiers to the valid elementary intervals. We 
find the ranges that satisfy the following conditions: (1) the 
ranges contain 2n valid elementary intervals and (2) the ranges 

Figure 3. PPCE results for the four ranges in Figure 2. 
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1
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layer 2 [1] 
layer 1 [0] 

layer 2 [2] 
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layer 1 [2-0] 
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1
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1
1

R2 

R4
R3 R1

TABLE I
PPCE MATCH CONDITIONS FOR RANGES IN FIGURE 2. 

correspondence R1 R2 R3 R4 
Figure 3 (a) 10** 01** **1* ***1 
Figure 3 (b) 11* 10* *1* **1 
Figure 3 (c) 11* 10* *1* 001,*10 
Figure 3 (d) 10* 001 011,10*,110 001,*10 
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are overlapped 2m (0 ≤ m ≤ n) valid elementary intervals by 
other ranges. We can assign a sequence of BRGC codes to the 
2n valid elementary intervals. 

Figure 4(b) shows one way to assign the BRGC identifiers 
to the four ranges in Figure 2. Layer 1 needs two bits because 
ranges R3 and R4 divide the address space into four address 
segments. The address segments covered by only R4, covered 
by both R3 and R4, and covered by only R3 are assigned with 
code 01, 11, and 10, respectively. Layer 1 needs only one bit 
based on the PPCE style-II. As a result, three bits are needed 
to represent the match conditions of the ranges as shown in the 
third row of Table II. The whole address space is mapped onto 
seven intervals with all the 3-bit codes except 101. For this 
example, we can reduce the number of match conditions of 
some range by an optimization as follows. Since no address 
can be translated to the intermediate value of 101, the search 
operations will remain correct if the match condition(s) of a 
range is added with the code 101. As a result, the match 
condition of R2 can be 100 or 10* if R2 is given an additional 
code 101. Likewise, the match condition of R4 may be 0*1 
and 111 (two prefixes) or **1 (one prefix) if R4 is given an 
additional code 101. Note that this optimization is different 
from the virtual interval technique described below. 

Figure 4(c) shows another way to assign the BRGC 
identifiers to the four ranges in Figure 2. It is easy to assign 
the BRGC identifiers such that the match condition of range 
R1, R2, or R3 can be represented by only one ternary string. 
However, since R4 covers three consecutive elementary 
intervals, E2, E3, and E4, then none of the encoding schemes 
can encode R4 into one ternary string. Because the code 011 is 
not used, we can view the interval E2 as two intervals by 
assigning both 011 and 010 to E2, where 011 can be called a 
virtual code. As a result, range R4 can be represented as one 
ternary string *1* and the ternary strings for other ranges are 
not changed. 

Based on the identifier assignment shown in Figure 4(c), 
the four ranges can be viewed as two disjoint range groups, 
one consists of range R2 and the other consists of three ranges, 
R1, R3, and R4. Since BRGC identifiers are used, we denote 
these two range groups as BRGC range groups. Our proposed 
scheme can be formulated as follows. 

1. The original ranges are classified into many BRGC range 
groups. We shall present how ranges can be found to form 
a BRGC range group later. 

2. BRGC range groups are mapped to different layers in a 
hierarchy such that the BRGC range groups in the same 
layer must be disjoint and the ranges of the BRGC range 
groups in the layer are assigned with BRGC codes.  

If the BRGC range group is restricted to contain only one 
range, then the proposed scheme is identical to the PPCE style-
I scheme. A BRGC range group is a set of ranges that are 
encoded by BRGC wherein the match condition of each range 
in the set is represented by only one ternary string. As shown in 
Figure 4(c), ranges R1, R3, and R4 are selected to form a 
BRGC range group, and R2 forms another BGRC range group 
by itself. Because these two BRGC range groups are disjoint, 
all the ranges in these two BRGC range groups can be placed 

Figure 4.PPCE and GC encoding for ranges in Figure 2. 
(c) PPCE style–III + GC + virtual interval 
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Figure 5. Perfect BRGC range groups. 
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TABLE II
MATCH CONDITIONS OF THE RANGES IN FIGURE 2 FOR PPCE+GC. 

correspondence R1 R2 R3 R4 
Figure 4 (a) 1*1 001 1** *10, 111 
Figure 4 (b) 11* 10* or 100 *1* **1 
Figure 4 (c) 1*1 001 1** *1* 
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in the same layer. Subsequently, we discuss how to find BRGC 
range groups. 

Now, we formally define the BRGC range group to be a set 
of ranges if the following rules are satisfied: (1) no range is 
disjoint from the other ranges in the group, (2) each range 
covers exactly 2c consecutive elementary intervals, and (3) the 
identifiers assigned to these 2c intervals can be merged into one 
ternary string, where c is a non-negative integer. A BRGC 
range group is called the perfect BRGC range group if it covers 
2d – 1 valid elementary intervals which need 2d – 1 distinct
identifiers. If a perfect BRGC range group is the only BRGC 
range group in a layer, then we need d bits for the layer and the 
unused identifier is assigned to the default elementary intervals. 
As a result, all 2d d-bit codes are used and no code is wasted. 

We show the perfect BRGC range groups consisting of 2, 4, 
and 8 ranges in Figure 5. In these perfect BRGC range groups, 
we assume that the start endpoints or finish endpoints of two 
ranges are different and the finish endpoint of one range is 
different from the finish endpoint minus one of another range 
in the group. The perfect BRGC range groups of 16 or more 
ranges can be constructed recursively. For example, the two 
ranges in group A2 cover three valid elementary intervals and 
are assigned the BRGC identifiers, 01, 11, and 10. The 
identifier 00 is assigned to the two default elementary intervals. 
As a result, the two ranges in group A2 can be represented with 
two 2-bit match conditions, 1* and *1. There are many other 
possible perfect BRGC range groups when the start endpoints 
or finish endpoints of two ranges are the same or the finish 
endpoint of one range is the same as the finish endpoint minus 
one of another range in the group.  

Now, we show the range groups called imperfect BRGC 
range groups that are not perfect BRGC groups. The imperfect 
BRGC range groups do not utilize all the 2d d-bit codes if d bits 
are needed. Therefore, it is better to put imperfect groups in the 
same layer as other BRGC range groups in order to prevent 
wasting the unused codes. For example, Figure 6 shows two 
imperfect BRGC range groups, C and D. Group D needs four 
bits to encode the nine elementary intervals it covers. We can 
see that six 4-bit codes are wasted aside from the one code used 
for the default intervals. Group C is also an imperfect BRGC 
range group. If group C and one single range are put into the 
same layer as group D, no extra bit is thus needed.  

Subsequently, we introduce two code assignment 
techniques to facilitate the search for range groups so that each 
range can be represented with one ternary string. 

C. Many-to-one code assignment  
The many-to-one code assignment scheme achieves the 

goal of using only one ternary string to encode a range by 
assigning more than one code to an elementary interval. We 
have shown an example that assigns two codes to an 
elementary interval in Figure 4(c). The many-to-one code 
assignment scheme is applied when the second rule of the 
BRGC range group defined above is not satisfied, that is, not 
all the ranges in the group cover exactly 2c consecutive 
elementary intervals. It is not possible to merge the codes 
assigned to the elementary intervals covered by a range into 
one ternary string if the number of the intervals is not 2c. If 

there are so many ranges that do not cover exactly 2c

consecutive elementary intervals, determining which 
elementary intervals are given the unused codes may be 
difficult. Therefore, we cautiously employ this scheme as 
follows. For a group of ranges, we try to assign more unused 
codes to the existing intervals covered by these k ranges only if 
there are less than k ranges that cover 2c – s consecutive 
elementary intervals. The values of k and s can be varied. In 
this paper, we set k and s to 1, as in the example of Figure 4(c). 

D. One-to-many code assignment  
It is a common case that one range may overlap with other 

ranges. Consider a range set S in which the range R completely 
encloses the other ranges in S. Based on the proposed encoding 
schemes described above, S cannot form a perfect BRGC range 
group because one code, usually 0, is reserved for the default 
interval. Thus, range R must not cover the power of 2 
consecutive elementary intervals. However, S may form an 
imperfect BRGC range group. Therefore, we develop the one-
to-many code assignment scheme which can be used to find an 
imperfect BRGC range group for this common case. The one-
to-many code assignment scheme extends the use of a common 
code from the default elementary intervals to the valid 
elementary intervals by assigning a common code to the valid 
elementary intervals covered by the same subset of original 
ranges. Consider the example shown in Figure 7. In range 
group E, R1 encloses R2 and R3 and then intersects R4. The 
three elementary intervals that are covered only by R1 are 
given the same code 0000, as shown underlined. There are 
three other elementary intervals that are covered by R1. These 
three elementary intervals are assigned with codes, 0001, 0011, 
and 0010. Based on BRGC, the elementary interval only 
covered by R4 is given 0110 so that the match condition of R4 
can be represented as a ternary string 0*10. The code 
assignment for the range group F can also be done by the one-
to-many code assignment scheme. As a result, only four bits 
are needed for the 11 ranges illustrated in Figure 7. 

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the 
proposed BRGC-based TCAM encoding schemes and compare 
them with the existing algorithms. Under the same 
classification tables, we evaluate storage requirements in terms 
of SRAM and TCAM. 

We use ClassBench [8] to generate the rule tables and 
extract their source and destination ports as the range sets to 
form a 2-D rule tables. Since the range sets for the source and 
destination ports we generated are large, they lose the 
characteristics of the real rule tables. In other words, all the 
ranges are heavily intersected with each other. They can be 
treated as randomly generated range sets. Likewise, because 

Figure 6.Imperfect BRGC range groups 

Group C of 3 ranges

0111 unused

Group D of 5 ranges

1001
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the results for ACL, IPC, and Firewall are similar, we only 
show the results for Firewall. 

The evaluated schemes are the direct range-to-prefix 
conversion (Direct), the elementary interval-based scheme 
using Buddy code (EIEBC) and the basic elementary interval-
based scheme using BRGC (EIEGC), the bitmap intersection 
scheme (Bitmap), PPCE style-II or III which performs the best 
(PPCE), and the proposed modified PPCE scheme using 
BRGC and virtual intervals (PPCGC). Table III shows the 
TCAM storage requirements in terms of number of TCAM 
entries and the size of a single TCAM entry.  

As expected, Direct consumes the most TCAM storage 
space among all the tested methods. Bitmap, PPCE, and 
PPCGC need the least number of TCAM entries, but they need 
longer TCAM entries. The size of TCAM entries for EIEBC 
and EIEGC is only 22 bits. EIEGC and PPCGC need the least 
number of TCAM bits. The difference of the required TCAM 
space between EIEGC and PPCGC decreases when the size of 
the rule table increases.  

Now, we calculate the SRAM space required for translating 
input addresses to the code values (i.e., the intermediate 
results). Since the port numbers are currently 16-bit values, we 

implement the address-to-intermediate result translation by 
using an array of 64k entries for each of the source and 
destination port fields. The entry size of the translation array 
needs to be as wide as the TCAM entries corresponding to the 
tested scheme. Table IV shows that Bitmap, PPCE, and 
PPCGC require much more SRAM than the other schemes. 
The use of SRAM for Bitmap, PPCE, or PPCGC grows 
linearly as the size of rule table increases. The size of SRAM 
needed for EIEBC and EIEGC does not increase much as the 
size of the rule table increases.  

V. CONLUSIONS

In this paper, we improve the existing range encoding 
schemes for TCAMs by using the binary reflected Gray code. 
To evaluate our scheme, we use ClassBench to generate 
classification tables and present the performance results. Our 
results show that the proposed Gray code-based schemes 
perform better than the traditional Buddy code-based schemes 
in terms of TCAM and SRAM memory usages.  
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Figure 7.The imperfect BRGC range groups by the enclosure encoding technique. 
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TABLE III
TCAM STORAGE REQUIREMENTS OF 100, 500, AND 1000 2-D RULES 

IN TERMS OF TOTAL(NUM/LEN), WHERE NUM IS THE NUMBER OF 
TCAM ENTRIES AND LEN IS THE NUMBER OF BITS IN EACH TCAM

ENTRY, AND TOTAL = NUM×LEN.

Rule Table FW100 FW500 FW1000 

Direct 618,464 
(19,327/32) 

3,218,656  
(100,583/32) 

6,315,520  
(197,360/32) 

EIEBC 53,792 
(3,362/16) 

673,800  
(33,690/20) 

1,783,804  
(81,082/22) 

EIEGC 39,216  
(2,451/16) 

520,800  
(26,040/20) 

1,432,200  
(65,100/22) 

Bitmap 20,000  
(100/200) 

500,000  
(500/1,000) 

2,000,000  
(1,000/2,000) 

PPCE 16,500  
(100/165) 

404,000  
(500/808) 

1,533,000  
(1,000/1,533) 

PPCGC 15,500  
(100/155) 

370,500  
(500/741) 

1,422,000  
(1,000/1,422) 

TABLE IV 
SRAM STORAGE REQUIREMENTS FOR 2-D RULE TABLES IN KBIT.

Rule Table FW100 FW500 FW1000 
Direct 0 0 0
EIEBC 1,024 1,280 1,408
EIEGC 1,024 1,280 1,408
Bitmap 12,800 64,000 128,000
PPCE 10,560 51,712 98,112

PPCGC 9,920 47,424 91,008
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